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Table 2. Coordinates for C~, C a and C 9 hydrazides 

C7 C a 
^ 

x (A) z (A) x (A) z (Ai 
C 1 3"56 1"57 0"33 1"57 
C~ 3-13 2.85 0"94 2.87 
C 3 3"88 4"11 0"39 4"12 
C a 3.46 5"38 0-97 5"37 
C 5 4-21 6.65 0.44 6.64 
C 6 3.78 7.91 1"03 7.92 
C7 4.28* 9.25* 0.44 9-20 
C a - -  ~ 1"13" 10-60" 
C 9  . . . .  

O 4"28* 9-25* 1" 13" 10"60" 
N 1 5"16 10"00 1.66" 11"29" 
N~ 5"97 11"18 2.41 12"48 

* ~ o t  resolved in /~ projection.  

C 9 

y (h) 
1.57 
0.96 
1-48 
0.98 
1.67 
0.92 
1.60 
0.95 
1.99" 
1-99" 
0.91 
1.24 

C a hydrazides  and  {0kl) for C 9 hydrazide.  The zld001 
values indicate t ha t  the  chains are very  nearly normal  
to (001). Bragg-Lipson charts were used to de termine  
the  approximate  structure.  Electron densities were 
computed  at  units  of a/60, b/30 and c/120 using Pa t t e r son -  

Fig. 3. Projection on (100) for C 9 hydrazide. Contours at 
arbitrary intervals of electron density. 

Tunell  strips. The th i rd  2' syntheses on (010) for C 7 and  
C s hydrazides  (116 and 98 terms respectively) are shown 
in Fig. 2, and  the  first F synthesis on (100) for C 9 hydra-  
zide (50 terms) is shown in Fig. 3. Approximate  coor- 
dinates  derived from these projections are listed in Table 2. 

Al though these results are prel iminary and  not  very 
accurate, some conclusions can be reached. The struc- 
tures of these compounds wi th  ei ther an even or odd 
number  of carbon a toms in the  chain appear  almost  the  
same in (010) projection. There seem to be no consistent 
irregularities in bond lengths along the  chains, nor do 
the  ra ther  short  chains appear  to deviate  from linearity.  

The C a and  C 9 hydrazides  have been chosen for fur ther  
s tudy and  three-dimensional  in tegra ted  da ta  have been 
collected for the  C9 compound.  
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In  recent  crystal-structure analyses it has been found 
necessary to apply anisotropie t empera ture  factors, ei ther 
to the  s tructure factors as a who le  (Hughes, 1941) or to 
the structure-factor contr ibut ions of part icular  a toms 
(Cochran, 1951a). Effects closely similar to those of 
asymmetr ic  thermal  vibrat ions are produced on the  
observed structure factors of crystals containing atoms 
whose electron clouds show appreciable departures  from 
spherical symmet ry  owing to their  bonding arrangements .  
Difference syntheses (Cochran, 1951b) enable one to find 
the direction of m a x i m u m  thermal  vibrat ion (or m a x i m u m  
departure  from spherical electron density) and  the  mag- 
ni tude of the  constants  involved,  and  Cochran himself 
has shown how to apply anisotropie tempera ture  factors 
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in two-dimensional  structure-factor calculations. The 
purpose of this note  is to show that ,  by making  certain 
assumptions about  the  symmet ry  of the  electron-densi ty 
clouds, such factors m a y  easily be applied to the  cal- 
culations of general hkl structure factors required by 
accurate crystal-structure analyses. The analysis given 
applies only to cases in which the  vibrat ion ellipsoid of 
the  a tom (or electron-densi ty ellipsoid) is an ellipsoid of 
revolution.  The ellipsoid is t rea ted  as a linear vibrat ion 
imposed on a spherically symmetr ical  vibration,  and the  
effects of both  are considered separately. This l imitat ion 
was imposed so tha t  the  final result  could be used in a 
practical  case by a simple graphical interpretat ion.  

For  the  sake of simplicity of explanat ion the  formula 
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will be deduced for a monoclinic crystal, bu t  it may  easily 
be generalized to the  triclinic case. Only the linear 
vibrat ion is considered. 

Fig. l(a) shows the  basal plane of a monoclinic uni t  
cell and  Fig. l(b) is the  corresponding reciprocal-lattice 

Direction of linear vibration , Direction of linear vibration 

Q P~, ]c /Q 
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0 a 0 
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Fig. 1. (a) Real space. (b) Reciprocal space. 

plane in its proper  orientation. Let  OQ (shown on both  
figures) be the  direction of linear vibrat ion of a part icular  
a tom or set of a toms and let OM be its project ion on to 
the  basal plane. We require to f ind the angle flhkZ be- 
tween OQ and the  normal  to the crystallographic plane 
(hkl), i.e. the  angle between OQ and the  line joining 0 
to the  reciprocal-lattice point  Phk~. Choose axes Ox, Oz 
in the  piano a*Oc* such tha t  Ox lies along OM and Oz 
is perpendicular  to OM. The th i rd  axis is coincident wi th  
the  ~ axis of reciprocal space and  we have y = ~ and 

= l/(x~+z~). 
Let  the direction cosines of OQ be Px, Py, 0 (Pz is 

zero by the  choice of axes). 
The direction cosines of OPhk~ are xh~d2 sin0h~, 

~/2 sin 0~ ,  z;~d2 sin 0~ ,  where 0~kt is the Bragg angle 
for the  (hkl) reflexion, ~ is the  ~ value for the kth  layer 
line, 

and  cos f l~  = py ~ + x~px  
2 s i n 0 ~  ' (1) 

The angle fl m a y  be required as the inclination of the  
scattering normal  to a molecular orbital in McWeeny's  
t r ea tmen t  of the  modifications to scattering curves de- 
manded  by  the  asymmetr ic  electron clouds of real a toms 
(MeWeeny, 1951). The evaluat ion of flhkZ for each re- 
flexion requires only the  measurement  of xhkl, the 
x coordinate of the  point  Phkz, on the  zero layer of the 
reciprocal lat t ice;  xhkz is of course independent  of layer 
line for monoclinic or higher symmetries,  py and Px are 
calculated once and  for all when the  direction of linear 
vibrat ion is decided upon, and  ~ and  sin 0hk~ are usually 
known from previous measurements  for other purposes. 

Let  a part icular  a tom A have a mean-square  dis- 
_ _  

placemen~ u~ in the direction OQ. 
Then the  mean-square  displacement of A(u~s) in a 

direction perpendicular  to the  plane (hkl) is given by 

u~ = u~ c o s  "~ ~hk~- (2) 

The result  given by  James  (1948, equat ion 1.33) states 
tha t  an (h/cl) structure factor is reduced by thermal  
vibrations by  an amoun t  exp I--M],  

where M = 8~2u2s (sin 2 0hkl)/22 . (3) 

Thus we have 

m 

M ---- 8~2u~ cos 2 fl~z (s in2 0~)/22 , (4) 

or, subst i tut ing for cos fl, 

u~ 
M = 2~" ~ (Pu ~k+x~zP~) 2 • (5) 

This may  be simplified to 

M = D (py~k+Xh~p~) "~ , (6) 

where D is a constant  having the  v a l u e  2~2U~/~ 2 . 

If, as often happens,  the  direction of linear v ibra t ion 
lies in the  basal plane, then  py ---- 0 and the  expression 
is fur ther  simplified to 

M = Dxikzp~x. (7) 

In  this special case all reflexions wi th  the  same h and  l 
values are reduced by the  same amount ,  regardless of 
their  /c indices (i.e. of the  layer line on which they  fall). 

Equa t ion  (7) represents the  asymmetr ic  par t  of the  
tempera ture  factor given by  Coehran (1951a, equat ion 
(3)). The difference in the  t r e a tmen t  given above is t h a t  
the  isotropic temperature  factor (depending only on sin0) 
has been ignored and tha t  now the  expression for the  
asymmetr ic  temperature  factor applies to all layer lines 
for monoclinic or higher symmetries .  

In  the  general triclinie case the  same procedure is 
followed and axes Ox, Oz, are always chosen in the  zero 
layer of the  reciprocal latt ice such tha t  the  plane yOx 
contains the direction of linear vibration.  In  this case the  
reducing factor for a structure factor is 

exp [ -- 2~ 2 u~ (Py.~k-~PxXhkl) 2] ; (8) 

Px, Py and 0 are the direction cosines of the  direction of 
m a x i m u m  vibration, ~k is the  height  in the  reciprocal 
latt ice of the  kth  layer line and  XhkZ is the  x co-ordinate 
of the  hkl latt ice point.  Once again the  x's m a y  be measured  
on the  zero layer of the reciprocal lat t ice but  t hey  will 
have to be increased by a cons tan t / ca  for the  /cth layer  
~o allow for the shift in the  layer origin (see Bunn,  1945, 
for the  evaluat ion of ~). 

The me thod  has been applied by  the  author  in the  
evaluat ion of the  three-dimensional  s tructure factors of 
polycaproamide.  The structure, which will be fully de- 
scribed in a later paper, is monoclinic and  consists of 
hydrogen bonded sheets of long-chain molecules, and, 
as might  be expected, the  thermal  vibrat ions are anise- 
tropic, the direction of m a x i m u m  vibrat ion being per- 
pendicular  both  to the plane of the  sheets and  to the  
b axis. The reducing factors for 115 structure factors 
dis t r ibuted on eight layer lines were calculated in two 
hours wi th  the  use of a zero-layer reciprocal latt ice,  

square and exp0nentlal tables and a multlplylng machine. 
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