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Table 2. Coordinates for C,, Cg and Cy hydrazides

C;

z (A) z (4)
(oA 3-56 1-57
C, 3-13 285
C, 3-88 411
C, 3-46 5-38
Cs 421 6-65
Cq 3.78 7-91
c, 4.28* 9-25*
Cy — —
C, — —
0 4-28* 9-25*
N, 5-16 10-00
N, 5-97 11-18

C C
z (A) z(4) ¥ (4)
033 1-57 1-57
0-94 2-87 0-96
0-39 412 1-48
0-97 537 0-98
0-44 6-64 1-67
1-03 7-92 0-92
0-44 9-20 1-60
1-13* 10-60* 095
J— — ! 1.99*
1-13* 10-60* 1-99*
1-66* 11-29* 0-91
2:41 12-48 1-24

* Not resolved in F projection.

Cg hydrazides and {0kl} for C, hydrazide. The Adyy,
values indicate that the chains are very nearly normal
to (001). Bragg—Lipson charts were used to determine
the approximate structure. Electron densities were
computed at units of a/60, b/30 and ¢/120 using Patterson—

LR

Fig. 3. Projection on (100) for Cy hydrazide. Contours at
arbitrary intervals of electron density.
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Tunell strips. The third F syntheses on (010) for C, and
Cg hydrazides (116 and 98 terms respectively) are shown
in Fig. 2, and the first ¥ synthesis on (100) for Cy hydra-
zide (50 terms) is shown in Fig. 3. Approximate coor-
dinates derived from these projections are listed in Table 2.

Although these results are preliminary and not very
accurate, some conclusions can be reached. The struc-
tures of these compounds with either an even or odd
number of carbon atoms in the chain appear almost the
same in (010) projection. There seem to be no consistent
irregularities in bond lengths along the chains, nor do
the rather short chains appear to deviate from linearity.

The C4 and Cy hydrazides have been chosen for further
study and three-dimensional integrated data have been
collected for the C, compound.

The authors express appreciation to Mr Clifford Roth
and Dr Wayne Chen, who performed most of the numerical
work, and to the Agnes H. Anderson Fund for support
of the early part of this work.
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In recent crystal-structure analyses it has been found
necessary to apply anisotropic temperature factors, either
to the structure factors as a whole (Hughes, 1941) or to
the structure-factor contributions of particular atoms
(Cochran, 195la). Effects closely similar to those of
asymmetric thermal vibrations are produced on the
observed structure factors of crystals containing atoms
whose electron clouds show appreciable departures from
spherical symmetry owing to their bonding arrangements.
Difference syntheses (Cochran, 1951b) enable one to find
the direction of maximum thermal vibration (or maximum
departure from spherical electron density) and the mag-
nitude of the constants involved, and Cochran himself
has shown how to apply anisotropic temperature factors

in two-dimensional structure-factor calculations. The
purpose of this note is to show that, by making certain
assumptions about the symmetry of the electron-density
clouds, such factors may easily be applied to the cal-
culations of general Akl structure factors required by
accurate crystal-structure analyses. The analysis given
applies only to cases in which the vibration ellipsoid of
the atom (or electron-density ellipsoid) is an ellipsoid of
revolution. The ellipsoid is treated as a linear vibration
imposed on a spherically symmetrical vibration, and the
effects of both are considered separately. This limitation
was imposed so that the final result could be used in a
practical case by a simple graphical interpretation.
For the sake of simplicity of explanation the formula
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will be deduced for a monoclinic crystal, but it may easily
be generalized to the triclinic case. Only the linear
vibration is considered.

Fig. 1{(a) shows the basal plane of a monoclinic unit
cell and Fig. 1(b) is the corresponding reciprocal-lattice

Direction of linear vibration
Q c
~

c N

« Direction of linear vibration

(9)
Fig. 1. (a) Real space. (b) Reciprocal space.

plane in its proper orientation. Let OQ (shown on both
figures) be the direction of linear vibration of a particular
atom or set of atoms and let OM be its projection on to
the basal plane. We require to find the angle Sy be-
tween OQ and the normal to the crystallographic plane
(hEl), i.e. the angle between OQ and the line joining O
to the reciprocal-lattice point Ppy. Choose axes Oz, Oz
in the plane a*Oc* such that Oz lies along OM and Oz
is perpendicular to OM. The third axis is coincident with
the { axis of reciprocal space and we have y = ¢ and
& = Y (x2+22).

Let the direction cosines of OQ be pi, py, 0 (p; is
zero by the choice of axes).

The direction cosines of OPpy; are xp/2 sin Opy,
Cx/2 sin Opry, 271/2 sin Opgg, Wwhere Oy is the Bragg angle
for the (hkl) reflexion, (i is the ¢ value for the kth layer
line,

_ PylrtThaps
2 sin Bhk;

and cos B

1

The angle f may be required as the inclination of the
scattering normal to a molecular orbital in McWeeny’s
treatment of the modifications to scattering curves de-
manded by the asymmetric electron clouds of real atoms
(McWeeny, 1951). The evaluation of B for each re-
flexion requires only the measurement of x, the
x coordinate of the point Py, on the zero layer of the
reciprocal lattice; xy is of course independent of layer
line for monoclinic or higher symmetries, p, and p, are
calculated once and for all when the direction of linear
vibration is decided upon, and { and sin 6,y are usually
known from previous measurements for other purposes.

Let a particular atom A have a mean-square dis-

placement 2 in the direction 0Q.
Then the mean-square displacement of A(;ﬁ) in a
direction perpendicular to the plane (hkl) is given by

u} = uf cos? By -

(2)

The result given by James (1948, equation 1-33) states
that an (kkl) structure factor is reduced by thermal
vibrations by an amount exp [—M],

where M = 87:2;2 (sin2 Gpz;)/A2 .

(3)

Thus we have
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M = 8n2uf cos? B (sin? Og)/A2 (4)
or, substituting for cos f,
ul
M = 23271 (py S+ Trup2)® - (5)
This may be simplified to
M = D (pylr+Tnaps)? (6)

where D is a constant having the value 2752;3/12 .

If, as often happens, the direction of linear vibration
lies in the basal plane, then p, = 0 and the expression

is further simplified to

M = Dazjpps . (7)

In this special case all reflexions with the same A and [
values are reduced by the same amount, regardless of
their k indices (i.e. of the layer line on which they fall).

Equation (7) represents the asymmetric part of the
temperature factor given by Cochran (195la, equation
(3)). The difference in the treatment given above is that
the isotropic temperature factor (depending only on sin#8)
has been ignored and that now the expression for the
asymmetric temperature factor applies to all layer lines
for monoclinic or higher symmetries.

In the general triclinic case the same procedure is
followed and axes Oz, Oz, are always chosen in the zero
layer of the reciprocal lattice such that the plane yOx
contains the direction of linear vibration. In this case the
reducing factor for a structure factor is

(8

Pz Py and O are the direction cosines of the direction of
maximum vibration, {; is the height in the reciprocal
lattice of the kth layer line and z; is the x co-ordinate
of the hkllattice point. Once again the x’s may be measured
on the zero layer of the reciprocal lattice but they will
have to be increased by a constant ko« for the kth layer
to allow for the shift in the layer origin (see Bunn, 1945,
for the evaluation of «).

The method has been applied by the author in the
evaluation of the three-dimensional structure factors of
polycaproamide. The structure, which will be fully de-
scribed in a later paper, is monoclinic and consists of
hydrogen bonded sheets of long-chain molecules, and,
as might be expected, the thermal vibrations are aniso-
tropic, the direction of maximum vibration being per-
pendicular both to the plane of the sheets and to the
b axis. The reducing factors for 115 structure factors
distributed on eight layer lines were calculated in two
hours with the use of a zero-layer reciprocal lattice,

square and exponential tables and a multiplying machine.

exp [—272ug (py L+ Pomin) 21
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